Artificial Intelligence-Enabled Predictive Model of Progression From Moderate to Severe Aortic Stenosis

BACKGROUND

Progression from moderate to severe aortic stenosis (AS) warrants careful monitoring due to the increased risk of sudden death and heart failure, with disease progression significantly varying among patients and no accurate predictive tools presently available.

OBJECTIVE

A Disease Progression Algorithm was developed from a deidentified database of 1,163,923 echocardiographic (echo) reports from 35 US institutions (egnite Database; egnite, Inc., Aliso Viejo, CA, USA) to predict the likelihood that a patient with moderate AS has progressed to severe AS over a 1- and 2-year period.

METHODS

Echocardiographic reports meeting inclusion criteria were ordered by patient and split into training (N = 4,499 patients) and test (N = 1,886 patients) datasets. Natural language processing and statistical modeling were used to support echocardiographic report evaluation and algorithm training, respectively. Algorithm development utilized a Cox proportional hazards model based on aortic valve (AV) measurements (AV area [AVA], jet velocity [JV], and mean pressure gradient [MPG]), age at date of index echocardiographic report, and time since moderate AS diagnosis to generate a predicted progression index (estimating the likelihood of a severe AS diagnosis upon reexamination with echo). Validation analyses compared population progression indexes to estimated actual observed disease progression towards severe AS within the test dataset.

RESULTS

Algorithm predictions approximated that 17.2% and 41.3% of the population would progress to severe AS at years 1 and 2, respectively, with the estimated actual observed progression of 15.8% and 42.0% at years 1 and 2, respectively. Progression for subpopulations stratified by initial AV measurements (AVA, JV, MPG) were predicted with an average error of 2.3% points.

CONCLUSIONS

Overall, the Disease Progression Algorithm represents a useful clinical tool that can accurately predict the progression from moderate to severe AS, identify subpopulations of patients who were more likely to progress to severe AS, and help physicians identify/prioritize patients who require careful follow-up after the diagnosis of moderate AS, potentially closer than recommended guidelines.

Moualla SK, McCarthy PM, Thomas JD, Dobbles M, Petrescu OM, Loper T, Barnhart GR, Brennan JM. Artificial intelligence-enabled predictive model of progression from moderate to severe aortic stenosis. Intelligence-Based Medicine. 2022;6:100062. doi10.1016/j.ibmed.2022.100062​

Follow egnite on social:

Related Articles

Real-World Evidence

Acute Valve Syndrome in Aortic Stenosis

“These findings are extremely important and complementary to the recently presented EARLY TAVR Trial, published in the NEJM. The absence of symptoms was traditionally considered a sign of relative safety. However, this study shows how frequent acute valve syndrome is in patients undergoing AVR, and how patients would benefit greatly

Press

egnite Inc.’s Real-World Evidence Demonstrates Improved Survival in Asymptomatic Aortic Stenosis Patients Undergoing Aortic Valve Replacement (AVR)

egnite Inc.’s Real-World Evidence Demonstrates Improved Survival in Asymptomatic Aortic Stenosis Patients Undergoing Aortic Valve Replacement (AVR) Key Findings Demonstrate 3x Improved Survival for Asymptomatic AS Patients Undergoing AVR versus AS Patients Presenting with Acute Valve Syndrome ALISO VIEJO, Calif. – October 28, 2024 – egnite, Inc., a leading cardiovascular digital

Press

egnite, Inc. and JenaValve Announce Novel Research on Outcomes with Untreated Aortic Regurgitation at the 2024 American College of Cardiology Conference

egnite, Inc., a leading digital health company specializing in cardiovascular care, today announced the addition of two distinguished physicians, Vinod H. Thourani, MD and Nicholas Amoroso, MD to its Medical Advisory Board. Their wealth of expertise in cardiovascular care and dedication to innovation will significantly contribute to egnite’s mission to improve cardiovascular patient care nationwide.